
Deep Learning for Anomaly Detection in Rate
Gyro Assembly Data

Edward Chau

Marshall Space Flight Center

August 2019

Reviewed By:

Brandon Steele (MSFC-ES52)

Wade Chatam (MSFC-ES52)

1

__
Deep Learning for Anomaly Detection in Rate

Gyro Assembly Data
Edward Chau

NASA Marshall Space Flight Center (Huntsville, AL) | ES52 Software Development Intern |
edwardchau@berkeley.edu

 Keywords: Machine Learning, LSTM, Autoencoder, RGA, Anomaly Detection

I. Introduction

he Guidance Navigation and Mission Analysis team utilizes Sensor Data Quality (SDQ), their software for fault
detection checks, on RGA1 data. A decision manager then examines error counters generated from SDQ checks
involving Data Quality Indicators (DQI), time tags, redundancy, and box comparisons. DQI evaluates the health

and status of RGA through internal hardware and software tests. Time tag checks ensures timesteps are 50 Hz.
Redundancy checks monitor rate differences between each channel of an RGA sensor. Box comparisons are similar
to redundancy checks but differences between sensor boxes are monitored. In collaboration with EV42, the ML
Technical Excellence (TE) team (ES52) is developing a deep learning approach to automate fault detection in RGA
data.

 RGA fault detection is one focus; the ML TE team is exploring several other routes for machine learning
applications in the Space Launch System (SLS). The goal of this TE is to develop experience in machine learning at
Marshall Space Flight Center and cooperate with other sectors to minimize the amount of human analysis. Machine
learning provides a general robust framework that can find complex patterns humans may overlook and reduces the
amount of test cases for sensor analysis. This paper covers the use of LSTM's, Autoencoders, LSTM-Autoencoders,
and Convolutional Neural Networks (CNN) for detection and classification of faults in FWD RGA y-axis data.

1 RGA is a 3-channel gyroscopic sensor part of the Core Stage Avionics existing in the FWD Skirt and AFT Skirt to sense SLS
vehicular motion

T

Abstract: The prominence of neural networks in areas for automation has led to machine learning (ML)
applications in data-rich industries. Gyroscopic sensors generate an abundance of data generated from
simulations that can be used to train an artificial neural model for anomaly detection. This paper illustrates
the use of deep learning networks including Long Short-Term Memory (LSTM), autoencoders, and LSTM-
autoencoders to detect faults in time series data. The experiment involves testing on injected faults in
nominal Rate Gyro Assembly (RGA) data provided by the Guidance Navigation and Mission Analysis
Team (EV42) and calculating the reconstruction error in order to locate the exact occurrences of anomalies.
The LSTM-Autoencoder was the most successful neural architecture in analyzing faults and producing the
least amount of false positives. A 1D Convolutional Neural Network (CNN) was also explored for anomaly
classification.

 2

II. Neural Network Architectures

A. Recurrent Neural Networks

 Recurrent neural networks (RNN) are optimal for detecting features in sequential data because they memorize
inputs in order to make predictions on subsequent events. Unlike other neural networks, RNN’s have loops that
take in previous events as inputs, giving them a temporal dimension [7]. With a deficit of off-nominal RGA
sensor data, RNN’s are able to utilize unsupervised learning with unlabeled data and reconstruct nominal RGA
curves.

B. LSTM

 Although RNN’s are able to take into account past
information to make a prediction, they are limited in handling
long-term dependencies [9]. As the gap between information
increases, RNN’s are unable to connect the outputs together.
LSTM networks overcome the long-term dependency issue
with a chain of repeating modules. Gates in an LSTM model
regulates cell states and determine which information passes
[6]. With this property, LSTM’s are useful for learning long-
term information in sequential data.

C. Autoencoder

 Autoencoders, used for dimensionality and noise reduction,
attempt to mimic inputs during training. The encoding layers
maps the input into code while the decoding layers translates
that code into a reconstruction. This approach is unsupervised
and uses the nominal RGA data to adapt weights and biases
for nominal reconstruction. Thus, when presented with
anomalous sequences, the autoencoder would result in a failed
reconstruction since it has never encountered faults during
training.

D. LSTM-Autoencoder

 Taking into account the fact that there is only nominal data
available to the Machine Learning TE team, an autoencoder
seems appropriate for this scenario. However, because the data
is sequential, temporal features need to be considered, which
LSTM layers are most efficient for [2]. Incorporating both
architectures into one results in an LSTM-Autoencoder2, allowing for the reconstruction of sequential nominal
RGA data.

2 LSTM-Autoencoders function similarly to Autoencoders but contain LSTM layers over Dense layers

Figure 1. LSTM Autoencoder model

3

E. CNN

 CNN’s are widely applied in computer vision for image analysis and are made up of convolution and pooling
layers. The combination of these two layers allow the CNN to extract significant features in data and assign
importance (weights and biases) to patterns it finds. In addition to computer vision, CNN’s can be used to
categorize types of time-series data [1]—in this scenario, classifying between nominal and off-nominal.

III. Neural Network Layers

See https://www.tensorflow.org/api_docs/python/tf/keras/layers for more information on layers

A. Convolution

 Convolution is an effective means for deriving the high-level features (based on the filter) in datasets. By
performing a series of dot products between the inputs and kernels, convolution allows the neural network to
perform efficiently with the reduction of parameters. One-dimensional convolution was used in the LSTM,
LSTM-Autoencoder, and CNN.

B. Pooling

 Pooling reduces spatial size of convolved features for dimensionality reduction and extraction of prominent
features by taking the maximum value of the kernel. One-dimensional max pooling was used in LSTM, LSTM-
Autoencoder, and CNN for noise suppression since average pooling does not have this ability.

C. Activity Regularization

 Activity regularization acts as a wrapper around a layer to induce learning sparse features and reduce
overfitting of the model [4]. An L1 regularizer was used under the Keras module that calculates the sum of
absolute values in the output of the first LSTM layer. Applying Rectified Linear Units (ReLU)3 after
regularization allows the neural network to bring the values to a true zero in cohesion with the activation
function (since ReLU returns a value between 0 and 1), increasing sparsity4 compared to applying ReLU before
regularization (See Section VII). Activity Regularization was used in the LSTM-Autoencoder.

3 ReLU is the preferred activation function because it overcomes the vanishing gradient problem where the gradient decreases at
an exponential rate during propagation (weights and biases will not be updated effectively)
4 Sparsity in neural networks simply means most weights are set to 0 for efficiency

Figure 2. Sigmoid vs ReLU Activation Functions (Image Downloaded from
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6)

4

D. LSTM

 The core idea behind an LSTM is mentioned in Section II (b). Stacked LSTM layers were used in order to
allow for greater model complexity in terms of representing features. Return sequences must be set to True
when stacking LSTMs in order for the second LSTM layer to have a 3D sequence input. Having a fully
connected layer does not allow the neural network to utilize information from a previous time step, missing
certain patterns unlike LSTM layers. LSTM layers were used in the LSTM and LSTM-Autoencoder.

E. Repeat Vector

 Repeat vectors used to piece together the encoder and decoder paths of the neural network by allowing the
decoder to use the same representation when creating each output timestep. It is used to repeat the fixed length
vector a given number of times in order to put reshape the 2D output of the encoder into a 3D input for the
decoder. Repeat vectors were used in the LSTM-Autoencoder.

F. Dense

 Dense layers are used as a fully-connected layer to output predictions based on the input it receives from the
previous layer. The LSTM, LSTM-Autoencoder, and CNN use this as a fully-connected layer. However, the
autoencoder layers are made up of simply dense layers since the encoder and decoders are just fully-connected
feedforward neural networks.

G. Time Distributed

 Time distributed wrappers apply a layer to each temporal slice (timestep) of the input independently. This
keeps each timestep value separate instead of being flattened (one-to-one relation) [3]. The LSTM-Autoencoder
tested was a one to one relationship so Time Distributed wrappers were unnecessary. However, for other types
of input-output relationships, time distributed wrappers may be needed (See Figure 3). Adjusting timesteps may
benefit accuracy and efficiency of the current LSTM-Autoencoder.

Figure 3. Input Output combinations of RNN (Image Downloaded from https://github.com/keras-
team/keras/issues/1029)

5

IV. Reconstruction Error

 In order to detect faults in data, the unsupervised model needs to learn the features that are considered
nominal. This allows the neural network to reconstruct what it is trained on. Therefore, it will fail to reconstruct
off-nominal points. The mean squared error (MSE) is taken between the prediction and input. There will be a
high error rate in the reconstruction, indicating faults [10]. Arbitrary thresholds are set to determine which
points fall under anomalous.

V. Model Compilation and Training

 Each RNN model was compiled using an RMSprop optimizer and MSE as loss. The models were trained on
150 epochs with a batch size of 25. Since autoencoders are used, the training input is a copy of the training
labels. There was an issue with the model’s ability to detect small outliers so several models had to be used to
minimize false positives and obtain significantly more accurate predictions (See Section VII). The CNN model
was compiled with the adam optimizer and categorical cross entropy as loss. In order to use categorical cross
entropy, the columns have to be one-hot encoded so the column will be created for each output category and a
binary variable is inputted for each category.

VI. Testing Procedures

 Randomized peaks were added to simulate anomalies that were out of range of the nominal RGA data, as
described to by the EV42 team to be one type of faults (See Section VII). Only the Y-Axis was used for
simplicity. For the CNN model, 147 columns of nominal FWD RGA y-axis data and 147 columns containing
randomly injected peaks were used. Multivariate analysis can be applied in the future through manipulation of
input shape to have several features (columns).

Figure 4. Mean Square Error Formula (Image Downloaded from
https://www.dataquest.io/blog/understanding-regression-error-metrics/)

 6

VII. Data and Analysis

A. Autoencoder, LSTM, LSTM-Autoencoder Results for FWD RGA Y-Axis Dataset

 Figure 4 shows the autoencoder, LSTM, and LSTM-Autoencoder results from training on the entire mission
elapsed time (MET) of an FWD RGA Y-Axis dataset. The models failed to predict most anomalies and even
contains some false positives. This was primarily due to the two large peaks in between an MET of 100 to 200
and 200 to 300. One method (used in this generation of models) that overcame the reconstruction issue was to
subsection the data (See Section VII C) and train 3 models on the subsets. Nevertheless, a more practical
method is to manually subsection the data and train a single model with multiple features5.

5 Unaccomplished due to time limitations

(a) (b)

(c) (d)

Figure 5. Initial Prediction Results without Subsections of RGA Y-Axis Data.

(a) Autoencoder (b) Helmerich’s LSTM (Trained like Autoencoder) (c) LSTM-Autoencoder (d) Nominal Data

7

B. LSTM

 Helmerich (ES51 Summer Intern 2018) utilizes an LSTM model trained for prediction, not anomaly detection
[5]. The method for anomaly detection here is inconsistent with how real data is obtained. In the paper, an
outlier point was injected and considered to be anomalous. However, the same nominal dataset (pre-injection)
was used in order to find the off-nominal point using the square difference (See Figure 6). In reality, sensors do
not provide both anomalous and nominal datasets for the same run. This Siamese twin method that takes in
nominal and test data for the input [5], narrowing the problem to a point where the model cannot be reused for
other applications and defeating the purpose of a general framework. Helmerich’s architecture would be optimal
for prediction but should be disregarded for fault detection. When training this LSTM model like an
autoencoder for experimental purposes, it predicted many false positives (See Figure 5) and was discontinued in
further testing.

Figure 6. Helmerich’s LSTM results on Subset of FWD RGA Y-Axis data

8

C. Subsection Data

 The data is split into 5 subsets (Indices: 0:7500, 7500:7800, 7800:11200, 11200:11600, 11600:~25000). All
nominal FWD RGA Y-Axis data are analogous and the peaks occur at around the same points. This is where the
use of multiple models is introduced. If all these 5 subsets were trained on one model, results would be similar
to training the whole dataset at once. Accordingly, 3 separate models of the same architectures were used to
analyze one dataset. One model was trained on the minimum peak (7500:7800), one model was trained on the
maximum peak (11200:11600), and the last model was trained on the other three data subsets that remained
around a fixed range (0:7500, 7800:11200, 11600:).

(a) (b)

(c) (d)

(e)

Figure 7. Subsectioned Nominal FWD RGA Y-Axis Data

(a) Indices 0:7500 (b) Indices 7500:7800 (c) Indices 7800:11200 (d) Indices 11200:11600 (e) Indices 11600:

9

D. Autoencoder

 Autoencoders are optimal for representation learning. With the limitations in data, autoencoders are able to
learn in an unsupervised manner and discover features on its own. The autoencoder resulted in false negatives
(See Figure 8e). Because a simple autoencoder does not take into account past information in its predications,
LSTM layers were adapted to this model in order to convert it into an LSTM-Autoencoder.

(a) (b)

(c) (d)

(e)

Figure 8. Autoencoder Reconstruction Results on 5 Subsets of FWD RGA Y-Axis Data

(a) Indices 0:7500 (b) Indices 7500:7800 (c) Indices 7800:11200 (d) Indices 11200:11600 (e) Indices 11600:

10

E. LSTM-Autoencoder

 LSTM-Autoencoders reconstruct the training data but take into account the temporal dimension unlike regular
autoencoders. The LSTM-Autoencoder that executed regularization after ReLU performed more accurately than
the LSTM-Autoencoder with regularization before ReLU. Regularizers are highly dependent on the problem.
For reconstruction of FWD RGA, because the shape of the curve is about the same, it is preferred for the neural
network over fit to the data. Since regularization was performed after ReLU, it is less sparse so more fit to the
data it is trained on [4].

(a) (b)

(c) (d)

(e)

Figure 9. LSTM-Autoencoder Regularization After ReLU Reconstruction Results on 5 Subsets of FWD RGA Y-
Axis Data

(a) Indices 0:7500 (b) Indices 7500:7800 (c) Indices 7800:11200 (d) Indices 11200:11600 (e) Indices 11600:

11

 The LSTM-Autoencoder with regularization after ReLU successfully detected 156/200 faults without any false
positives and got the location of both anomalous peaks.

(a)

(b)

Figure 10. Prediction of Anomalous FWD RGA Y-Axis from LSTM-Autoencoder with Regularization After ReLU

(a) Indices 0:7500 (b) Indices 11600:

12

(a) (b)

(c) (d)

(e)

Figure 11. LSTM-Autoencoder Regularization Before ReLU Reconstruction Results on 5 Subsets of FWD RGA Y-
Axis Data

(a) Indices 0:7500 (b) Indices 7500:7800 (c) Indices 7800:11200 (d) Indices 11200:11600 (e) Indices 11600:

13

 The LSTM-Autoencoder with regularization before ReLU successfully detected 152/200 faults without any false
positives and got the location of both anomalous peaks.

(a)

(b)

Figure 10. Prediction of Anomalous FWD RGA Y-Axis from LSTM-Autoencoder with Regularization Before ReLU

(a) Indices 0:7500 (b) Indices 11600:

14

F. CNN

 The results of the CNN were negligible. Two different architectures were used (See Appendix (6) and
Reference [1]) The CNN was tested on 25000 points to keep to datasets uniform and also 2000 points to see if
there was an issue with noise but the model still classified every dataset as anomalous. Once EV42 generates
datasets with their definition of faults, the CNN model may be able to classify these anomalies. However, this
model should be discontinued until labeled data is provided.

VIII. Discussion

 The LSTM-Autoencoder was the most accurate out of the 3 RNN’s tested, detecting 156/200 of the
anomalous injected points. However, the LSTM and Autoencoder models should not be disregarded in future
applications. LSTMs can be used for prediction purposes while simple autoencoders could be used to
reconstruct non-sequential data. Furthermore, CNN’s could be applied to a multitude of classification problems.
Though the CNN trained was defective, architecture adjustments and additional anomalous data provided by
EV42 may allow for a valid results.
 Machine learning introduces an additional layer of complexity in pattern analysis that may be overlooked by
humans. Unsupervised models are able to discover features and patterns on its own in order to make a
prediction. One deep learning model could also be used for different types of datasets, reducing the amount of
test cases required across SLS sensor testing. This report covers only one axis of RGA data for simplicity but
the capacity of deep learning has transcended to the point where other sensor data can be trained on the same
LSTM-Autoencoder to detect anomalies, allowing for a general framework that encompasses different types of
data. Continual experimentation with multivariate fault detection, architecture adjustments, and hyper-
parameter tuning would allow the machine learning model to far exceed its current abilities.

15

Appendix

1) Lstm (See Helmerich Paper)

2) Autoencoder

3) Lstm-Autoencoder with ReLU Before Regularization

16

4) Lstm-Autoencoder with ReLU After Regularization

5) Reconstruction Error

6) CNN

17

References

[1] Ackermann, N. (2018, September 4). Introduction to 1D Convolutional Neural Networks in Keras for Time
Sequences. Medium. Retrieved from https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-
networks-in-keras-for-time-sequences-3a7ff801a2cf

[2] Brownlee, J. (2018, November 5). A Gentle Introduction to LSTM Autoencoders. Machine Learning Mastery.
Retrieved from https://machinelearningmastery.com/timedistributed-layer-for-long-short-term-memory-networks-in-
python/

[3] Brownlee, J. (2017, May 17). How to Use the TimeDistributed Layer for Long Short-Term Memory Networks in
Python. Machine Learning Mastery. Retrieved from https://machinelearningmastery.com/timedistributed-layer-for-
long-short-term-memory-networks-in-python/

[4] Brownlee, J. (2018, November 30). How to Reduce Generalization Error With Activity Regularization in Keras.
Machine Learning Mastery. Retrieved from https://machinelearningmastery.com/how-to-reduce-generalization-
error-in-deep-neural-networks-with-activity-regularization-in-keras/

[5] Helmerich, C. (2018 August). Machine Learning for SLS Flight Software Anomaly Detection and Analysis.
NASA.

[6] Korneev, E. (2018, December 20). LSTM Neural Networks for Anomaly Detection. Medium. Retrieved from
https://medium.com/datadriveninvestor/lstm-neural-networks-for-anomaly-detection-4328cb9b6e27

[7] Kostadinov, S. (2017, December 6). How Recurrent Neural Networks Work. Towards Data Science. Retrieved
from https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7

[8] Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. (2016 July). LSTM-based
Encoder-Decoder for Multi-sensor Anomaly Detection. Tata Consultancy Services Ltd. Retrieved from
https://arxiv.org/pdf/1607.00148.pdf

[9] Olah, C. (2015, August 27). Understanding LSTM Networks. Github.io. Retrieved from
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[10] Rajaratne, M. (2018, November 17). Credit Card Fraud Detection using Autoencoders in H2O. Towards Data
Science. Retrieved from https://towardsdatascience.com/credit-card-fraud-detection-using-autoencoders-in-h2o-
399cbb7ae4f1

[11] Ranjan, C (2019, June 4) Step-by-step understanding LSTM Autoencoder Layers. Medium. Retrieved from
https://towardsdatascience.com/step-by-step-understanding-lstm-autoencoder-layers-ffab055b6352

